skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Van, Ellen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In semicrystalline conjugated polymer thin films, the mobility of charges depends on the arrangement of the individual polymer chains. In particular, the ordering of the polymer backbones affects the charge transport within the film, as electron transfer generally occurs along the backbones with alternating single and double bonds. In this paper, we demonstrate that polymer ordering should be discussed not only in terms of structural but also energetic ordering of polymer chains. We couple data from molecular dynamics simulations and quantum chemical calculations to quantify both structural and energetic ordering of polymer chains. We leverage a graph-based representation of the polymer chains to quantify the transport pathways in a computationally efficient way. Next, we formulate the morphological descriptors that correlate well with hole mobility determined using kinetic Monte Carlo simulations. We show that the shortest and fastest path calculations are predictive of mobility in equilibrated morphologies. In this sense, we leverage graph-based descriptors to provide a basis for the quantitative structure-property relationships. 
    more » « less